Three-Dimensional Competitive Lotka-Volterra Systems with no Periodic Orbits

نویسندگان

  • Mary Lou Zeeman
  • Pauline van den Driessche
چکیده

The following conjecture of M. L. Zeeman is proved. If three interacting species modeled by a competitive Lotka–Volterra system can each resist invasion at carrying capacity, then there can be no coexistence of the species. Indeed, two of the species are driven to extinction. It is also proved that in the other extreme, if none of the species can resist invasion from either of the others, then there is stable coexistence of at least two of the species. In this case, if the system has a fixed point in the interior of the positive cone in R3, then that fixed point is globally asymptotically stable, representing stable coexistence of all three species. Otherwise, there is a globally asymptotically stable fixed point in one of the coordinate planes of R3, representing stable coexistence of two of the species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit cycles for competitor–competitor–mutualist Lotka–Volterra systems

It is known that a limit cycle (or periodic coexistence) can occur in a competitor–competitor–mutualist Lotka–Volterra system  ẋ1 = x1(r1 − a11x1 − a12x2 + a13x3), ẋ2 = x2(r2 − a21x1 − a22x2 + a23x3), ẋ3 = x3(r3 + a31x1 + a32x2 − a33x3), where ri , ai j are positive real constants [X. Liang, J. Jiang, The dynamical behavior of type-K competitive Kolmogorov systems and its applications to 3-di...

متن کامل

Chaotic Interactions of Self-replicating RNA

A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the...

متن کامل

Multiple Limit Cycles for Three Dimensional Lotka-Volterra Equations

A 3D competitive Lotka-Volterra equation with two limit cycles is constructed. Keywords-Lotka-Volterra equations, Competitive systems, Limit cycles, Hopf bifurcation. INTRODUCTION It is a classical result (due to Moisseev 1939 and/ or Bautin 1954, see [l, p. 213, Section 12, Example 71 or [2, 18.21) that 2D Lotka-Volterra equations cannot have limit cycles: if there is a periodic orbit, then th...

متن کامل

On a Conjecture for Three–dimensional Competitive Lotka–volterra Systems with a Heteroclinic Cycle

For three-dimensional competitive Lotka-Volterra systems, Zeeman (1993) identified 33 stable equivalence classes. In this paper we show that: in the case of a heteroclinic cycle on the boundary of the carrying simplex of three-dimensional competitive Lotka-Volterra systems (class 27 in Zeeman’s classification), the conditions (a) there is a pair of purely imaginary eigenvalues at an interior eq...

متن کامل

Lotka-Volterra dynamics under periodic influence

Lotka Volterra model and its modified forms have long become a major area of interest for periodic motions in nonlinear systems with competitive species. The model given by Volterra shows that its periodicity is dependent on initial condition. This characteristics allows us to calculate the effect of periodic seasonal changes on population densities of different species.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 58  شماره 

صفحات  -

تاریخ انتشار 1998